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Authentication of Moving Top-k Spatial
Keyword Queries

Dingming Wu, Byron Choi, Jianliang Xu, and Christian S. Jensen

Abstract—A moving top-k spatial keyword (MkSK) query, which takes into account a continuously moving query location,
enables a mobile client to be continuously aware of the top-k spatial web objects that best match a query with respect to location
and text relevance. The increasing mobile use of the web and the proliferation of geo-positioning render it of interest to consider
a scenario where spatial keyword search is outsourced to a separate service provider capable at handling the voluminous spatial
web objects available from various sources. A key challenge is that the service provider may return inaccurate or incorrect
query results (intentionally or not), e.g., due to cost considerations or invasion of hackers. Therefore, it is attractive to be able
to authenticate the query results at the client side. Existing authentication techniques are either inefficient or inapplicable for
the kind of query we consider. We propose new authentication data structures, the MIR-tree and MIR∗-tree, that enable the
authentication of MkSK queries at low computation and communication costs. We design a verification object for authenticating
MkSK queries, and we provide algorithms for constructing verification objects and using these for verifying query results. A
thorough experimental study on real data shows that the proposed techniques are capable of outperforming two baseline
algorithms by orders of magnitude.
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1 INTRODUCTION

A Spatial keyword query [6], [8], [12], [37], [38] inte-
grates location and text search. Taking a location and

a set of keywords as arguments, such queries return relevant
spatial web objects that match the arguments. Spatial web
objects can be points of interest (e.g., restaurants, tourist
attractions, hotels, entertainment services) with a web pres-
ence, and they thus have locations as well as textual descrip-
tions. A moving top-k spatial keyword (MkSK) query [39],
[40], which takes into account a continuously moving query
location, enables a mobile client to be continuously aware
of the top-k spatial web objects that best match a query
with respect to location and text relevance, and it has
numerous mobile uses. For example, a mobile client may
activate a “cafe” query in order to be alerted about nearby
opportunities for a cup of coffee. With the MkSK query, a
client always has an up-to-date result as the client moves.
The client can ignore a result and just keep moving until
an appealing result appears.

A straightforward solution to the MkSK query is to
periodically invoke an existing snapshot spatial keyword
query processing technique. However, this approach has
the problem that even if snapshot queries are processed
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very frequently, which is expensive and wasteful because
consecutive results are likely to be very similar, there is
no guarantee that the user always has the right, up-to-date
result. Another possible solution is to extend a buffering
technique for spatial kNN query processing [35] to top-
k spatial keyword querying. Given a kNN query, this
technique retrieves k+∆k nearest neighbors and uses them
to derive a buffer region with the property that as long as
the user moves inside the region, the kNN result can be
derived from the k+ ∆k objects. However, it is not known
how to extend this technique to MkSK queries, where both
text relevance and spatial distance are considered. A safe
zone based approach [39], [40] for the processing of MkSK
queries returns a safe zone to a client together with the
query result. The safe zone is a region containing the user’s
location and in which the top-k result remains unchanged.
The safe zone based approach significantly reduces the
communication between clients and the service provider as
well as computation costs, since the client needs to request
new result only when leaving the safe zone.
Example 1.1: Consider the example MkSK query q in
Figure 1, where the query keywords are “vanilla coffee.”
The text relevance of objects p1 and p2 to q are 2 and 1,
respectively, when using the number of matched keywords
for defining relevance. The service provider returns object
p2 as the top-1 result and the gray circle as the safe zone
of p2, meaning that as long as the client remains inside the
gray circle, object p2 is the top-1 result. The curved path
shows the client’s movement. When the client crosses the
boundary of the gray circle (at q′), it sends its updated
location to the service provider that then computes and
returns a new top-1 result p1 and the white region as the
safe zone. �
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Fig. 1. Example MkSK Query

The web is increasingly being used by mobile users,
some 20–50% of web queries have local intent [14], [34],
and web content with location continues to proliferate
(e.g., web pages, business director entries, tweets, check-
ins). This development renders it relevant to enable the
outsourcing of spatial keyword querying. Such outsourcing
of query functionality by an entity that wishes to deliver
a service, called a data owner (DO), to a service provider
(SP) offers a number of advantages [15], including elastic
scaling, cost savings, and high availability when compared
to conventional client-server architectures. Moreover, data
owners need not buy high performance hardware and hire
technical staff to maintain the service. The outsourcing
is likely to also improve service availability. In addition,
outsourcing can reduce the network latency associated with
the delivery of query results.

However, being outside of the administrative scope of
the DO, the SP may return inaccurate or incorrect query
results, intentionally or unintentionally, e.g., due to cost
considerations or invasion of hackers [36]. In our setting,
the SP may return an overly large safe zone together with
a query result in order to save computing resources and
communication bandwidth [27], [43]. The SP may also
return an overly small safe zone to incur frequent requests
from the client if the SP is paid per request. Therefore,
query authentication, i.e., establishing the soundness and
completeness of query results at the client side, is highly
desirable. Soundness guarantees that every result object is
present in the DO’s database and is not tampered with.
Completeness ensures that no valid result object is missed
in a query result.

Authentication techniques have been developed for a
variety of queries, including relational queries [19], [26],
[41], sliding window queries [20], [29], spatial queries [16],
[42], text similarity queries [27], shortest path queries [43],
moving kNN queries [44], moving range queries [45], and
subgraph search [11], [30]. However, all existing Authen-
ticated Data Structures (ADS) are either inapplicable or
inefficient in relation to our setting, since the authentication
of MkSK queries involves verifying both spatial proximity
and text relevance. Moreover, authenticating an MkSK
query includes verifying both the top-k result and the
accompanying safe zone. The safe zone is calculated based
on both the objects in the top-k result and the objects not
in the top-k result, so that missing a non-result object may
cause a safe zone to fail in the authentication. Although
authentication techniques for moving kNN queries [44] and
moving range queries [45] involve safe zone verification,

the safe zone of an MkSK query is very different, i.e., it
is a Multiplicatively Weighted (MW) Voronoi cell [25].

To the best of our knowledge, this paper is the first to
study the authentication of moving top-k spatial keyword
queries. Our proposals also apply to the authentication of
static top-k spatial keyword queries (only verifying the top-
k result), which is a sub-task of the authentication of MkSK
queries. Our contributions include:
• We design a new data structure for the authentication

of MkSK queries, the MIR-tree, that enables low
computation and communication costs. The MIR-tree
is applicable to many variant of the spatial keyword
query.

• We design a Verification Object (VO) for authenticat-
ing the top-k results and safe zones of MkSK queries.
Algorithms for constructing VO and verifying the top-
k results and safe zones using VO are developed.

• An enhanced data structure, the MIR∗-tree, is pro-
posed to further reduce the communication cost. The
idea of the MIR∗-tree is applicable for any tree-
structured ADS, e.g., the MR-tree [42], where each
node contains multiple entries.

• We conduct a thorough experimental study on real
data to evaluate the performance of our proposals.
The proposed approaches are able to outperform two
baseline algorithms exploiting existing authentication
techniques by orders of magnitude.

The rest of the paper is organized as follows. The
problem setting is presented in Section 2. The two new
ADSs, the MIR-tree and the MIR∗-tree, the design of a
VO, and accompanying algorithms for the authentication
of MkSK queries are introduced in Section 3. We describe
the two baseline algorithms and study the performance of
our proposals in Section 4. Related work is covered in
Section 5, and we conclude in Section 6.

2 PROBLEM SETTING
2.1 Moving Top-k Spatial Keyword Query
We consider a generic problem setting in which the future
locations of an MkSK query cannot be predicted in ad-
vance [39], [40]. Let D be a data set in which each object
p ∈ D is a pair 〈λ, ψ〉 of a point location p.λ and a text
description, or document, p.ψ (e.g., the facilities and menu
of a restaurant). A moving top-k spatial keyword (MkSK)
query q = 〈λ, ψ, k〉 takes three arguments: a continuously
changing point location λ, a set of keywords ψ, and a
number of requested objects k. Intuitively, an object whose
description is more relevant to the query keywords and is
closer to the query location is preferable. We use a weighted
distance (Equation 1) [3] as our ranking function. This
type of function has been used extensively in the geo-
sciences [13], [18] and it matches the semantics of the
query. A key strength of this function is that the different
units of measurement of the spatial distance and textual
relevance is canceled out in the ratio and thus do not affect
the result.

rankq(p) =
‖q p‖
trq(p)

, (1)
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where ‖q p‖ denotes their Euclidean distance and trq(p)
denote the text relevancy of p to q. The MkSK query
retrieves k objects RS that minimize the ranking value
and a safe zone Υk(RS) within which the top-k result is
valid. Formally, ∀p ∈ RS (∀p′ ∈ D − RS (rankq(p) ≤
rankq(p′))) and q.λ ∈ Υk(RS) =⇒ RS is the top-k
result.

The safe zone of the top-k result of an MkSK query
is an order-k MW-Voronoi cell [25] that is an irregular
geometric entity. The text relevancy of an object to the
query is the weight used in the computation of MW-Voronoi
cells. We thus use weight w(·) and text relevancy trq(·)
interchangeably. Note that the safe zone preserves the set
of top-k objects, not the ranking of the top-k objects. More
details about safe zones is provided in Appendix A. Table 6
in Appendix A summarises the symbols used in the paper.

2.2 Authentication Framework
Figure 2 illustrates the framework for answering MkSK
queries that supports correctness verification. The frame-
work consists of two phases, i.e., initialization and query
processing & authentication. In the initialization phase, the
DO first gets a private key from a key distribution center.
Next, it signs the ADS constructed on the data set using
the private key and transfers the ADS and signatures to
the SP. A client downloads a public key from the key
distribution center and the signatures from the SP. In the
query processing and authentication phase, the client first
issues an MkSK query. Upon receiving the query, the SP
computes the top-k result, the safe zone, and a verification
object (VO) that encodes the query result and its safe zone.
The client gets the VO from the SP. The top-k result RS
and its safe zone Υk(RS) are obtained from the VO. The
correctness of the top-k result and the safe zone can be
verified by the client using the VO, the signatures, and the
public key. The client needs to send a new request to the
SP only when it leaves the safe zone.
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Fig. 2. MkSK Query Authentication

2.3 Authentication Tasks
The authentication of an MkSK query q amounts to guar-
anteeing that the client always has the correct top-k result
while its spatial location changes continuously. The safe
zone based approach guarantees that as long as the query
does not exit the safe zone, the received top-k result remains

valid. In other words, when the query moves across the
boundary of a safe zone, it requests an updated top-k result
and corresponding safe zone. Therefore, authenticating an
MkSK query is equivalent to verifying the correctness of
both the top-k result RS and the corresponding safe zone.
The sufficient condition of MkSK query authentication can
be further divided into four sub-conditions.
(I) Soundness of a top-k result.

∀p ∈ RS (p ∈ D) (2)

Every object in the top-k result must present in DO’s data
set. Specifically, both the location and the text description
of the object are not tampered with and the ranking score
rankq(p) of p is computed correctly.
(II) Completeness of a top-k result.

∀p ∈ RS (∀p′ ∈ D −RS (rankq(p) ≤ rankq(p′))) (3)

All objects not in the top-k result have ranking scores that
are no better than any of those of the result objects.
(III) Soundness of a safe zone.

∀p ∈ I (p ∈ D) (4)

Since a safe zone is computed from the result objects
and the influence objects [40], the facts that the locations
and the text descriptions of the influence objects are not
tampered with, the text relevancies of influence objects
are computed correctly, and sub-condition (I) guarantee the
soundness of a safe zone.
(IV) Completeness of safe zone.

∀λ′ ∈ Υk(RS) (Q(λ′, ψ, k) = Q(λ, ψ, k)
∧

∀λ′ /∈ Υk(RS) (Q(λ′, ψ, k) 6= Q(λ, ψ, k) (5)

For all locations λ′ in the safe zone, the result of the query
with parameters λ′, the keywords of the original query ψ,
and k on the original data set is the same as the result of the
original query Q(λ, ψ, k). For all λ′ not in the safe zone,
the two results are different.

2.4 Threat Model

The SP is the potential adversary [42]. The SP is outside the
administrative scope of the DO and thus cannot be trusted.
With the exception of the DO’s private key, adversaries are
assumed to know all information, including the public key
for the secure-hash function, the ADS, the signatures, and
the authentication algorithms. They may alter the data set
or the ADS, and they may tamper with the search result.
Issues related to privacy are beyond the scope of this paper.

2.5 Problem Statement

We study the authentication of MkSK queries, aiming for a
solution that (i) verifies the soundness and completeness of
the top-k result and the safe zone of a given MkSK query
and (ii) optimizes the server-side computational cost and
the client/server communication cost, i.e., the VO size.
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3 PROPOSED SOLUTION

Most existing authentication techniques construct a region
(range), also called a verification set, that covers the query
result. The data objects that fall into the verification set
are sent to the client. In addition, summary objects that are
used to derive bounds on the ranking scores of the objects
outside the verification set are sent to the client. In other
words, the VO contains the objects inside the verification
set and a number of summary objects. Using this VO, the
client is able to authenticate the result. Since the result
of an MkSK query is retrieved according to Equation 1,
authenticating an MkSK query involves verifying both the
spatial distances and text relevancies of the result objects.
The current state-of-the-art solution for authenticating spa-
tial queries, the MR-tree [42], and the existing method for
authenticating the query results of text search engines [27]
can be used to authenticate the spatial and textual parts
of the result objects separately. However, this approach is
inefficient because it generates a large VO based on a large
verification set, which causes high communication cost and
long authentication time, as we will show in the paper’s
experimental study. We propose a new ADS, the MIR-tree
(Section 3.1), for efficiently verifying MkSK queries. It is
also applicable to spatial keyword queries based on other
ranking functions. The proposed authentication algorithms
(in Sections 3.2 and 3.3) construct a compact VO, i.e.,
put minimum numbers of objects and MIR-tree entries into
the VO. Hence, the communication cost and authentication
time are saved. To further reduce the size of a VO, we
propose an enhanced ADS, the MIR∗-tree (in Section 3.4).

3.1 MIR-Tree

The Merkle-IR-tree (MIR-tree) is developed based on the
IR-tree [8], by embedding a series of digests in each node
of the tree. In the IR-tree, each entry summarizes the spatial
distances and text relevancies of the entries in its child
node. This index enables the efficient processing of spatial
keyword queries, since it is able to prune the search space
according to spatial proximity and text relevance simulta-
neously. In the MIR-tree, to authenticate text relevancies,
a word digest is stored with each entry in each posting
list in the inverted file attached to each non-leaf node.
Formally, for a word w, a posting list entry takes the form
(id ,weight , hw(e)), where id is the identifier of an entry
e in a node in the tree, weight is the weight of w in the
pseudo text description of e, and hw (e) is the word digest
of e for word w. The word digest of e for w is computed
from the hash value of the concatenation ‘|’ of the binary
representation of all the entries in the posting list of w in
the child node of e:

hw(e) = h((ce1,weight , hw(ce1))|
(ce2,weight , hw(ce2))| · · · ), (6)

where cei (i = 1, 2, · · · ) is an entry in the child node of e
and h() is a secure hash function. Entries in leaf nodes do
not have word digests.

Figure 3 and Table 1 illustrate how word digests are
stored and computed, respectively. For example, in InvF -
R5 the word digest of word ‘c’ (hc(R1)) for non-leaf entry
R1 is computed as hc(R1) = h((p1, 5)|(p2, 5)); in InvF -
root the word digest of word ‘c’ (hc(R5)) for non-leaf entry
R5 is computed as hc(R5) = h((R2, 7, hc(R2))|(R1, 5,
hc(R1))), which takes the digests in the child nodes
(hc(R1) and hc(R2)) into account. The digests of other
words are computed similarly. Note that, word digests do
not occupy any space in nodes. They are stored in the
inverted files attached to nodes. The word digests of the
root node (e.g., hc(root)) are signed by the data owner
(e.g., RSA(hc(root))) and are stored with the MIR-tree.
Each word has a root signature.

Furthermore, to authenticate spatial distances, a spatial
digest is stored with each non-leaf entry. Formally, a non-
leaf node contains entries of the form (Ri, Ri.Λ, Ri.h),
where Ri is a reference to its child node, Ri.Λ is the MBR
of all rectangles in entries of the child node, and Ri.h is
the spatial digest of the child node. The leaf nodes are
identical to those of the IR-tree. The spatial digest of a leaf
node is computed from the hash value of the concatenation
of the binary representation of all objects in the node.
The spatial digest of a non-leaf node summarizes its child
nodes’ MBRs as well as their digests. The root spatial
digest is signed and stored with the MIR-tree. Figure 3
and Table 2 illustrate how spatial digests are stored and
computed, respectively.

The shaded parts in Figure 3 show the additions to the
MIR-tree over the IR-tree. The update cost of the MIR-
tree is comparable to that of the IR-tree. Specifically, when
inserting or deleting an object in a leaf node, the spatial
and word digests in its parent node are re-computed only
if the MBR and the word weights of the parent node are
changed. If splitting happens, the spatial and word digests
of affected nodes are re-computed. Changes are propagated
to the root node.

R5,R5.h R6,R6.h

R1,R1.h R2,R2.h R3,R3.h R4,R4.h

p1 p2
p5 p9 p6 p7p3 p4 p8

InvF-R1

a: (p1,5)

b: (p2,5)

c: (p1,5),(p2,5)

InvF-R2

a: (p3,7)

b: (p8,3)

c: (p4,7),(p8,3)

d: (p3,1),(p4,1)

InvF-R3

a: (p5,4),(p9,3)

b: (p5,4),(p9,3)

InvF-R4

a: (p7,1)

b: (p6,4),(p7,1)

c: (p7,4),(p6,3)

d: (p7,1)

InvF-R5

a: (R2,7,ha(R2)),

(R1,5,ha(R1))

b: (R1,5,hb(R1)),

(R2,3,hb(R2))

c: (R2,7,hc(R2)),

(R1,5,hc(R1))

d: (R2,1,hd(R2))

InvF-R6

a: (R3,4,ha(R3)),

(R4,1,ha(R4))

b: (R3,4,hb(R3)),

(R4,4,hb(R4))

c: (R4,4,hc(R4))

d: (R4,1,hd(R4))

InvF-root

a: (R5,7,ha(R5)),

(R6,4,ha(R6))

b: (R5,5,hb(R5)),

(R6,4,hb(R6))

c: (R5,7,hc(R5)),

(R6,4,hc(R6))

d: (R5,1,hd(R5)),

(R6,1,hd(R6))

Fig. 3. Example MIR-Tree
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TABLE 1
Example Word Digest Computations

InvF-R5

ha(R2) = h((p3, 7))
ha(R1) = h((p1, 5))
hb(R1) = h((p2, 5))
hb(R2) = h((p8, 3))
hc(R2) = h((p4, 7)|(p8, 3))
hc(R1) = h((p1, 5)|(p2, 5))
hd(R2) = h((p3, 1)|(p4, 1))

InvF-R6

ha(R3) = h((p5, 4)|(p9, 3))
ha(R4) = h((p7, 1))
hb(R3) = h((p5, 4)|(p9, 3))
hb(R4) = h((p6, 4)|(p7, 1))
hc(R4) = h((p7, 4)|(p6, 3))
hd(R4) = h((p7, 1))

InvF-root

ha(R5) = h((7, ha(R2))|(5, ha(R1)))
ha(R6) = h((4, ha(R3))|(1, ha(R4)))
hb(R5) = h((5, hb(R1))|(3, hb(R2)))
hb(R6) = h((4, hb(R3))|(4, hb(R4)))
hc(R5) = h((7, hc(R2))|(5, hc(R1)))
hc(R6) = h((4, hc(R4)))
hd(R5) = h((1, hd(R2)))
hd(R6) = h((1, hd(R4)))
ha(root) = h((7, ha(R5))|(4, ha(R6)))
hb(root) = h((5, hb(R5))|(4, hb(R6)))
hc(root) = h((7, hc(R5))|(4, hc(R6)))
hd(root) = h((1, hd(R5))|(1, hd(R6)))

TABLE 2
Example Spatial Digest Computations

R1.h = h(p1|p2)
R2.h = h(p3|p4|p8)
R3.h = h(p5|p9)
R4.h = h(p6|p7)
R5.h = h(R1.Λ|R1.h|R2.Λ|R2.h)
R6.h = h(R3.Λ|R3.h|R4.Λ|R4.h)
root .h = h(R5.Λ|R5.h|R6.Λ|R6.h)

3.2 Top-k Result Authentication

The challenge of verifying a top-k result involves the design
of a compact VO that achieves low communication cost and
short authentication time. The inefficiency of authenticating
spatial distances and text relevancies separately using exist-
ing techniques [27], [42] can be illustrated by the following
example. Imagine a data set of 5 objects p1, . . . , p5 having
spatial distances 1, 2, 3, 4, 5 and text relevancies 5, 6, 7,
8, 20, with regard to a query. According to the ranking
function in Equation 1, objects p1 and p5 make up the top-
2 result with ranking scores 0.2 and 0.25. If authenticat-
ing the spatial distance and text relevance separately, one
verification set covering the objects with spatial distances
smaller than 5 (the maximum spatial distance in the result)
and the other verification set covering the objects with text
relevancies larger than 5 (the minimum text relevance in
the result) are constructed. Therefore, the whole data set is
covered by the two verification sets and added to the VO,
which incurs very high communication cost. Idealy, only
one verification set covering the objects (p1 and p5) with
ranking scores smaller than 0.25 (the maximum value of
a ranking score of a result object) should be constructed.
Thus, only three objects p1, p5 and a summary object
representing all the other objects in the data set make up a
VO that achieves low communication cost.

3.2.1 VO Construction
The proposed ADS, the MIR-tree, has the desirable prop-
erty that only a minimum number of objects and MIR-
tree entries need to be inserted into the VO. We construct
a verification set VSrs covering the objects with ranking
scores smaller than rankk = maxp∈RS{rankq(p)}, i.e.,
the maximum score in the top-k result. Recall that the
smaller the score, the better the ranking. Algorithm 1
shows the pseudo code for constructing the VO for the
top-k result. Each entry e in the VO takes the form
(id ,Λ,H , {(w ,weight , hw (·))}), where id is an identifier,
Λ is an MBR, H is a spatial digest, and (w ,weight , hw (·))
is a triple where w is the identifier of one query keyword,
weight is the weight of word w , and hw(·) is the word
digest. If id refers to an object, its H and hw(·) values are
empty.

The VO is computed by a depth-first traversal of the
MIR-tree using the following conditions: (i) if a non-leaf
entry e has a ranking score rankq(e) = ‖q e‖min/trq(e)
that is higher than rankk , the VO entry for e is constructed
and added to the VO, and its subtree will not be visited
(lines 7–9); otherwise, Algorithm 1 is called to process the
child node of e (lines 25–26); (ii) for any visited leaf node,
all the objects in it are added to the VO (line 7). When
constructing the VO, a traversal string strrs is composed
that tracks the search in the MIR-tree. It contains the
identifiers of the tree entries and objects added to the VO,
as well as the special tokens ‘[’ and ‘]’ used to mark the
scope of a node (line 11). The traversal string is needed
in order to avoid having duplicate entries in the VO, since
the VO for the top-k result and the VO for the safe zone
may otherwise have common entries, as will be explained
later. Finally, the VO and the traversal string strrs are sent
to the client.

Algorithm 1 VOConstruction (MIRtreeNode N , double
rankk , MkSKQuery q)

1: Append [ to strrs ;
2: for each entry e in N do
3: if N is a leaf node then
4: Add VOEntry(e) to VO;
5: Append e to strrs ;
6: else . N is a non-leaf node.
7: if rankq(e) > rankk then
8: Append e to strrs ;
9: Add VOEntry(e) to VO;

10: else
11: VOConstruction (e, rankk , q);
12: Append ] to strrs ;
13: Return VO and strrs ;

Example 3.1: Figure 3 shows the MIR-tree built on
the spatial web objects in Figure 4. Let q be an MkSK
query with query keyword ‘c’, where k = 1. Its
top-1 result is object p1. The traversal string strrs is
[[[p1p2][p3p4p8]][R3R4]]. The VO is {(p1, p1.Λ, {(c, 5)}),
(p2, p2.Λ, {(c, 5)}), (p3, p3.Λ, {(c, 7)}), (p4, p4.Λ, {}),
(p8, p8.Λ, {(c, 3)}), (R3, R3.Λ, R3.H, {}), (R4, R4.Λ, R4.H ,
{(c, 4, hc(R4))})}. The entries shown using bold font in
Figure 3 are added to the VO. Since object p4 and entry
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R3 do not contain word ‘c’, their (w ,weight , hw (·)) sets
are empty. The root spatial signature RSA (root.H) and
the root word signature RSA(hc(root)) are sent to the
client together with the VO and the traversal string. �

p9 p5
R3

p6
p7

R4

R6

p1 p2
R1

p3
p8

R2

R5

p4

q

Fig. 4. Spatial Web Objects

3.2.2 Verifying a Top-k Result
The client extracts the top-k result from the VO and authen-
ticates it. It first computes the ranking scores of the objects
in the VO using Equation 1, ranks them, and obtains the
top-k objects. Next, the client re-computes the root spatial
and word digests using the strrs and VO (Algorithm 2)
and verifies them against the decrypted root spatial and
word signatures. The main idea is to re-construct the MIR-
tree traversal performed by the server, i.e., guaranteeing the
entries in the VO are from the original MIR-tree. Then,
it verifies the correctness of the top-k result by checking
whether the ranking score computed from Equation 1 of the
kth object is no worse than those of all the other entries in
the VO.
Example 3.2: Consider the traversal string strrs and
the VO in Example 3.1. The root spatial digest is
re-constructed as h(MBR(p1.Λ, p2.Λ, p3.Λ, p4.Λ, p8.Λ)|
h(MBR(p1.Λ, p2.Λ)|h(p1|p1.Λ|p2|p2.Λ)|MBR(p3.Λ, p4.Λ,
p8.Λ)|h(p3|p3.Λ|p4|p4.Λ|p8|p8.Λ))|MBR(R3.Λ, R4.Λ)|
h(R3.Λ|R3.H|R4.Λ|R4.H)). The root word digest of ‘c’
is h((7, h((7, h((p4, 7)|(p8, 3)))|(5, h((p1, 5)|(p2, 5)))))|
(4, h((4, dc(R4))))). The steps needed to compute the
spatial and word digests are shown in Figure 5. �

3.2.3 Soundness and Completeness
In this section, we prove that our proposal can authenticate
the top-k result.

Proof of Soundness.
Suppose that an object p in the result is fake or modified.
The re-constructed root spatial and word digests (hash
values) cannot be verified against the signatures provided by
the data owner, which is detected, since the hash function
is one way collision-resistant and p and its word weights
must be used by Algorithm 2.

Proof of Completeness.
Let p be one of the top-k objects and let N be the leaf node
containing p. If all the entries in N are in the VO, for sure
p is in the VO and is included in the top-k result. If N
is pruned by the server, the MBR, keyword weights and
digests of N are in the VO. The client obtains the top-k
result from the VO, which does not include p. Since the
re-constructed root spatial and word digests (hash values)
equal the decrypted signatures, the ranking score of N is

correct and must be better than that of the kth object, which
informs the client about a potential completeness violation.

Algorithm 2 (MBR, SpatialDigest, WordWeightList, Word-
DigestList) Authentication (VerificationObject VO, String
strrs , MkSKQuery q)

1: spatialstr ← null ;
2: wordstrlist ← null ;
3: MBR ← null ;
4: WordWeightList ← null ;
5: WordDigestList ← null ;
6: for each word w in the query keywords do
7: w.str ← null ;
8: wordstrlist .add(w.str);
9: w.weight ← −1;

10: WordWeightList .add(w.weight);
11: w.digest ← 0;
12: WordDigestList .add(w.digest);
13: while strrs is not empty do
14: eV ← strrs .nextEntry();
15: if eV refers to an object then
16: p← VO.getEntry(eV );
17: MBR ← MBR ∪ p.Λ;
18: spatialstr ← spatialstr |p.id |p.Λ;
19: for each word w′ in {(w ,weight , hw′(·))} do
20: Find the corresponding w in wordstrlist and

WordWeightList ;
21: w.str ← w.str |(p.id , w′.weight);
22: w.weight ← max(w.weight , w′.weight);
23: if eV refers to a non-leaf entry in the MIR-tree then
24: e← VO.getEntry(eV );
25: MBR ← MBR ∪ e.Λ;
26: spatialstr ← spatialstr |e.Λ|e.H;
27: for each word w′ in {(w ,weight , hw′(·))} do
28: Find the corresponding w in wordstrlist and

WordWeightList ;
29: w.str ← w.str |(w′.weight , hw′(·));
30: w.weight ← max(w.weight , w′.weight);
31: if eV is [ then
32: (mbr , sd ,wwl ,wdl ) ← Authentication (VO, strrs ,

q);
33: MBR ← MBR ∪mbr ;
34: spatialstr ← spatialstr |mbr |sd ;
35: for each word w′ in wwl and wdl do
36: Find the corresponding w in wordstrlist and

WordWeightList ;
37: w.str ← w.str |(w′.weight , hw′(·));
38: w.weight ← max(w.weight , w′.weight);
39: if eV is ] then
40: for each word w in WordDigestList and wordstrlist

do
41: w.digest ← h(w.str);
42: Return (MBR, h(spatialstr),WordWeightList ,
43: WordDigestList);

3.3 Safe Zone Authentication
Recall that a safe zone is defined by influence objects. The
challenge of verifying the safe zone is to ensure that the
client notices that influence objects are missing if the SP
omits some influence objects. Considering the safe zone
in Figure 6(a), suppose that the SP only sends influence
objects p2 and p4 to the client, omitting p3. Then the client
will construct an incorrect (larger) safe zone, namely the
gray region in Figure 6(b). The influence objects p2 and p4
are originally from the data set that can pass the verification
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by checking root signatures. However, the client cannot
determine whether the influence object set provided by the
SP is complete.

strrs = [   [   [   p1     p2   ]   [   p3     p4     p8   ]   ]   [   R3     R4   ]   ]

R1.Λ=MBR(p1,p2)

R1.H=h(p1|p2)

R2.Λ=MBR(p3,p4,p8)

R2.H=h(p3|p4|p8)

R6.Λ=MBR(R3,R4)

R6.H=h(R3.Λ|R3.H|R4.Λ|R4.H)

R5.Λ=MBR(R1,R2)

R5.H=h(R1.Λ|R1.H|R2.Λ|R2.H)

root.H=h(R5.Λ|R5.H|R6.Λ|R6.H)

weight of R1 = 5

hc(R1)=h((p1,5)|(p2,5))

weight of R2 = 7

hc(R2)=h((p4,7)|(p8,3))

weight of R6 = 4

hc(R6)=h((4,hc(R4))

weight of R5 = 7

hc(R5)=h((7,hc(R2)|(5,hc(R1))

hc(root)=h((7,hc(R5)|(4,hc(R6))Computing word digests

Computing spatial digests

Fig. 5. Computation of Spatial and Word Digests
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p3   1
p1   3

p4   5

p5   4

Cp1,p5  

Cp1,p4  

Cp3,p1  

⊥p1,p2  

(a) Safe Zone

p2   3

p1   3

p4   5

p5   4

Cp1,p5  

Cp1,p4  

⊥p1,p2  

(b) Fake Safe Zone
Fig. 6. Example Safe Zones

A naive approach is to send the whole data set to the
client so that the client is guaranteed to compute the correct
safe zone. However, this involves the high communication
cost of transferring the whole data set and is impractical
since the client may have neither enough storage to store the
data set nor computational resources to efficiently compute
the result. We aim to design a VO for authenticating the
safe zone such that the VO is as small as possible.

3.3.1 VO Construction
We define a verification set VSsz that is intended to contain
the objects that are useful for verifying the safe zone,
and we insert the objects in this region into the VO.
Verification set VSsz is calculated based on the minimum
and maximum border distances [40] defined as follows:

Definition 3.1: The minimum border distance of a non-
result object p from a result object p∗ is the minimum
distance between p∗ and the border of its dominant region
Domp∗,p , i.e.,

bordmin(p∗, p) = bordmin(p∗,Domp∗,p) =

‖p∗ p‖ w(p∗)

w(p∗) + w(p)
. (7)

Definition 3.2: The maximum border distance of a non-
result object p from a result object p∗ is the maximum
distance between p∗ and the border of its dominant region
Domp∗,p , i.e.,

bordmax (p∗, p) = bordmax (p∗,Domp∗,p) =

‖p∗ p‖ w(p∗)

|w(p∗)− w(p)|
. (8)

We first consider the safe zone of a top-1 object p∗. Let
I+ be the set of influence objects of the safe zone of p∗,
where the weight of each influence object exceeds that of
p∗. A threshold τ is defined as the minimum value of the
maximum border distances of the influence objects in I+,
i.e.,

τ = min
p∈I+

bordmax (p∗, p). (9)

Verification set VSsz of the safe zone of p∗ covers the
objects whose minimum border distances are smaller than
τ .

As an example, the gray region in Figure 7 is the
safe zone of top-1 object p∗. The influence object set I+

contains p1 and p4. Threshold τ = bordmax (p∗, Cp∗,p1
) is

shown as the dashed circle. The verification set VSsz of
the safe zone covers objects p1 and p2 that are influence
objects.

p*‹0.5›

p2‹0.3›

p1‹0.9›

p3‹0.1›

p4‹0.8›

bordmin(p*,Cp3,p*)

bordmin(p*,Cp2,p*)

bordmin(p*,Cp*,p4)

bordmin(p*,Cp*,p1)

bordmax(p*,Cp*,p1)=τ

Fig. 7. Example Safe Zone and Influence Objects
We proceed to define the verification set of the safe zone

of top-k result RS. The order-k MW-Voronoi cell of set
RS, denoted by Υk(RS), contains all locations that take
set RS as the top-k result. In other words, Υk(RS) is
the safe zone for the result set RS. Region Υk(RS) can
be represented by the intersections of order-1 MW-Voronoi
cells [25]:

Υk(RS) =
⋂

p∗j∈RS
ΥD−RS(p∗j ), (10)

where ΥD−RS(p∗j ) denotes the MW-Voronoi cell of p∗j with
respect to the object set D−RS. For each result object p∗j ,
threshold τj is computed as τj = minp∈I+

j
bordmax (p∗j , p),

where I+j is the influence object set of p∗j . We next give the
formal definition of the verification set of the safe zone.

Definition 3.3: The verification set VSsz of a safe zone
of top-k result RS covers the objects that satisfy the
following condition:∧

p∗j∈RS
bordmin(p∗j , p) ≤ τj (11)

Theorem 3.1: The objects covered by the verification set
VSsz of the safe zone of top-k result RS are sufficient to
re-construct the safe zone.

Proof: The theorem implies that the objects outside
the verification region do not contribute the safe zone.
According to Definition 3.3, any object p outside the
verification set VSsz satisfies the following condition:∨

p∗j∈RS
bordmin(p∗j , p) > τj (12)
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Suppose the minimum border distance of p exceeds the
threshold τ of one result object p∗, i.e., bordmin(p∗, p) > τ .
Based on the definition of the minimum and maximum bor-
der distances (Definitions 3.1 and 3.2) and τ (Equation 9),
the dominant region Domp∗,p completely contains the safe
zone of p∗, i.e., Domp∗,p ⊃ Υ(p∗). In other words, object p
does not contribute to the safe zone of p∗. According to the
definition of the safe zone of top-k resultRS (Equation 19),
object p does not contribute to the safe zone of the top-k
result.

Having the verification set, the VO for the safe zone can
be constructed by applying Algorithm 1 with the following
modification:

1) The input parameters are: MIRtreeNode N , top-k
result RS, thresholds {τj}.

2) Replace strrs with the traversal string strsz for the
safe zone.

3) Replace the condition in line 7 with Equation 12,
where the minimum border distance of an entry e
in the MIR-tree is computed as bordmin(p∗, e) =
‖p∗ e‖minw(p∗)/(w(p∗) + w(e)).

The VO for the top-k result and the safe zone can
be constructed using a single traversal of the MIR-tree.
The traversal strings strrs and strsz indicate the relevant
objects and entries for the top-k result and the safe zone,
respectively, while only one copy of each object and entry
are stored in the VO.

3.3.2 Verifying a Safe Zone
The client re-constructs the safe zone using the VO and au-
thenticates it. After obtaining the top-k objects, it calculates
the safe zone using the top-k objects and the remaining
objects in the VO. Next, the client re-computes the root
spatial and word digests using the strsz and the VO by
applying Algorithm 2, and it verifies them against the
decrypted root spatial and word signatures, making sure
that the entries in the VO are from the original MIR-tree.
Then, it verifies the correctness of the safe zone by checking
whether all the other entries in the VO except the top-k
objects and influence objects satisfy Equation 12.

3.3.3 Soundness and Completeness
In this section, we prove that our proposal can authenticate
a safe zone.

Proof of Soundness.
Suppose that the safe zone constructed by the client is fake
or modified, i.e., the influence objects derived from the VO
are fake or modified. The re-constructed root hash values
cannot be verified against the root signatures provided by
the data owner, which is detected, since the hash function
is one way collision-resistant and the influence objects and
their word weights must be used by Algorithm 2.

Proof of Completeness.
Let p be one of the influence objects and let N be the leaf
node containing p. If all the entries in N are in the VO,
for sure p is in the VO and will be used to construct the
safe zone. If N is pruned by the server, the MBR, keyword

weights and digests of N are in the VO. The client obtains
the safe zone from the VO, without using p. Since the
re-constructed root hash values match the root signatures,
the dominant regions of the top-k result object over N is
correct and must intersect the safe zone, which informs the
client about a potential violations of completeness.

3.4 MIR*-Tree

The VO size is critical to minimize the client/server com-
munication cost and reduce the client-side result verification
time. We proceed to propose an enhanced ADS, the MIR∗-
tree, that enables a reduction of the VO size. Specifically,
the digests in the MIR∗-tree are computed differently than
in the MIR-tree. The underlying idea is applicable to any
tree structure based ADS, e.g., the MR-tree [42], where
each node contains multiple entries.

In the MIR-tree, each non-leaf entry has one spatial
digest and several word digests. When a non-leaf entry (that
is pruned) is added to the VO, its MBR, one spatial digest,
and m word digests are included, where m is the number
of query keywords. Hence, for a visited non-leaf node in
the MIR-tree, n(m+ 1) digests may be added to the VO,
where n is the number of pruned entries. Let Sd be the
size in bytes of a digest and let Sm be the size in bytes
of an MBR. The contribution of a non-leaf node N to the
VO is SN = n[(m + 1)Sd + Sm]. With a node fanout in
the range of hundreds, n can be large. And the size of a
digest Sd is large (e.g., 64 bytes when using the SHA-512
hash function), while the size of an MBR Sm is at most
32 bytes if using double precision. Hence, the VO size is
dominated by the number of digests included.

We propose a new way to compute the digests by incor-
porating the Rabin cryptosystem (quadratic residue) [31] to
reduce the digests being added to the VO, resulting in a
new index structure, the MIR∗-tree, where for each visited
non-leaf node, at most m+ 1 digests are added to the VO.
Then the contribution of a non-leaf node N in the MIR∗-
tree to the VO is S∗N = (m + 1)Sd + n · Sm. Given an n
value larger than 100, the VO size of the MIR∗-tree can be
significantly reduced, compared with that of the MIR-tree.

Finding a solution to x2 ≡ y (mod N), where N = pq
and p, q are primes, is equivalent to factoring a large
number [31]. Thus, finding x under passive attacks is as
hard as factoring. We proceed to exemplify how to compute
the digests in the MIR∗-tree using the quadratic residue. If
an entry points to a leaf node, its digests are the same
as those in the MIR-tree. If an entry points to a non-
leaf node, its spatial digest is computed from the hash
value of the concatenation of the binary representation
of all the MBRs in its child node and one digest that
is the modulo multiplication of all the digests’ squares
in its child node. As shown in Figure 8, the child node
of R5 contains four entries. The spatial digest of R5

is computed as R5.H = h(R1.Λ|R2.Λ|R3.Λ|R4.Λ|Hs),
where Hs =

∏4
i=1Ri.H

2 (mod N). The word digests are
computed in a similar way. Suppose all the five entries in
Figure 8 contain word ‘c’ with weight 1. The word digest
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of R5 for word ‘c’ is hc(R5) = h((R1, 1)|(R2, 1)|(R3, 1)|
(R4, 1)|Hw), where Hw =

∏4
i=1 hc(Ri)

2 (mod N).

R1.Λ, R1.H

R5.H=

h(R1.Λ|R2.Λ|R3.Λ|R4.Λ|Hs)

R2.Λ, R2.H R3.Λ, R3.H R4.Λ, R4.H

Fig. 8. Spatial Digests in the MIR*-Tree

During the process of constructing a VO, when visiting
a non-leaf node, the modulo multiplication of the spatial
digests of pruned entries and the modulo multiplication
of the word digests of pruned entries for each query
keyword are added to the VO. Consider the example in
Figure 8, where all the five entries contain word ‘c’. If
entries R1, R2, and R4 are pruned, we add one spatial
digest H ′s =

∏
{R1.H,R2.H, R4.H} (mod N) and one

word digest H ′w =
∏
{hc(R1), hc(R2), hc(R4)} (mod N)

to the VO. In contrast, in the MIR-tree, three spatial
digests, R1.H,R2.H , and R4.H , and three word digests,
hc(R1), hc(R2), and hc(R4), are added to the VO.

The client is able to compute the spatial digest and
the word digests for a node in a similar way as does
the server using the VO. Continuing with the above
example, the client first re-computes the spatial digest
and the word digest of R4, i.e., R4.H and hc(R4).
Then Hs = (H ′s · R4.H)2 (mod N) and Hw = (H ′w ·
hc(R4))2 (mod N). The correctness is guaranteed by

∏
h2i

(mod N) = (
∏
hi)

2 (mod N).
To observe the potential improvement, Figure 9(a) plots

SN and S∗N as a function of n, where Sm = 32, Sd = 64,
and m = 1. As n increases, i.e., more entries in a non-
leaf node are pruned, the difference between SN and S∗N
becomes larger. The size of the contribution of a non-
leaf node in the MIR∗-tree to the VO (S∗N ) increases
more slowly than that in the MIR-tree (SN ). Figure 9(b)
illustrates that SN and S∗N exhibit similar trends as the
number of query keywords m increases. We expect that the
MIR∗-tree produces a smaller VO than does the MIR-tree,
and the empirical study confirms our expectation.
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4 EXPERIMENTAL STUDY
We conduct empirical studies to evaluate our proposals,
comparing with two baselines introduced in Section 4.1.
Section 4.2 presents the data sets, queries, parameters, and
platform used in experiments. The proposals for the authen-
tication of MkSK queries are evaluated in Section 4.3.

4.1 Baselines
We develop two baseline algorithms that exploit existing
techniques for the authentication of MkSK queries. One is
Inverted Index and Sorted Lists (IISL) utilizing signature
chaining [26], and the other is Inverted Index and MR-tree
(IIMR) that combines existing proposals [27], [42].

Inverted Index and Sorted Lists (IISL).
The IISL consists of two parts. One part is the inverted
index [46], which is an efficient and popular index for
keyword search, indexing the text descriptions of objects.
The other part contains two sorted lists, indexing the
spatial point locations of the objects. One list is for x-
coordinates and the other one is for y-coordinates. Both
lists are sorted ascendingly. We apply the idea of signature
chaining to authenticate MkSK queries. A signature chain
is constructed for each of the two sorted lists and each
posting list in the inverted index.

Given an MkSK query q, we first compute its top-k result
RS and the safe zone Υk(RS). In order to utilize the
signature chaining to authenticate q, verification sets VSX

and VSY for the two sorted lists of coordinates and VSwi

for the posting list of each query keyword in the inverted
index are constructed to compute a VO. We show how to
compose the above verification sets in the appendix.

A VO is constructed by retrieving the objects covered
by the verification sets. Each entry in the VO takes the
form (id ,Λ, {(w ,weight)}), where id is the identifier, Λ
is the minimum bounding rectangle, and (w,weight) is
a pair of a query keyword and its weight. In addition,
a condensed RSA signature is computed by multiplying
all the signatures of the objects in the VO. The client
recomputes the top-k result and the safe zone from the
VO and verifies the condensed RSA signature.

Inverted Index and MR-tree (IIMR).
The IIMR consists of an inverted index that indexes the text
descriptions of the objects and an MR-tree that indexes the
spatial point locations of the objects. Verification sets VST

and VSs , presented in the appendix are used to construct a
VO to authenticate an MkSK query result. Specifically, the
efficient approach TNRA-Chain-MHT proposed by Pang
et al. [27] is applied to the inverted index to authenticate
the text relevancies of objects using VST , and the MR-tree
authenticates the spatial distances of objects using VSS .

4.2 Experiment Setup
We use two data sets, each containing objects with a point
location and a text description, for studying the robustness
and performance of the proposals. Data set EURO contains
points of interest (e.g., ATMs, hotels, stores) in Europe1.
Data set LONDFLI contains objects referring to photos
taken in the area of London, where each object is composed
by a spatial location and a text describing the photo (title
and description). Table 3 offers additional details. We
normalize object locations to fit a square domain with side
length 10,000 meters.

1. http://www.pocketgpsworld.com



10

TABLE 3
Data Set Statistics

data set # of objects # of distinct average # of words
words per object

EURO 162,033 35,315 18
LONDFLI 1,255,149 222,613 8

The Brinkhoff generator [5] is used to generate a trajec-
tory using one location acquisition per timestamp (second).
Each experiment has 100 moving queries with such tra-
jectories. The keyword set of each query is generated by
randomly picking an object in the data set and randomly
choosing adjacent words from the document of the object.

We generally report the average value per query per
timestamp of the following: (i) server-side elapsed time (for
the query processing and the VO construction), (ii) server-
side simulated I/O cost, (iii) client-side elapsed time (for
the result verification), and (iv) communication cost (the
VO size in KBytes).

We study the two baselines and our proposed solutions—
the MIR-tree and the MIR∗-tree. By default, we set the
number k of results to 1, the number of query keywords
to 2, the client moving speed to 10 m/s, and the fanout
of the MIR-tree and the MIR∗-tree to 200. We used disk-
based index structures with a page size fixed at 4 KBytes.
A simulated LRU buffer with size 256MB is used. All the
algorithms are implemented in Java and run on a Linux
machine with one processor (Intel(R) Core(TM)2 Quad
CPU Q8400 @ 2.66 GHz) and 4 GB memory. The Java
Virtual Machine Heap is set to 2 GB. We employ the SHA-
512 as the hash function and 1024-bit RSA as the signature
scheme.

4.3 Performance Results

We study the proposed methods under varying settings,
including the performance on different data sets, vary-
ing numbers of requested results k, varying numbers of
query keywords, varying speeds of moving queries, varying
fanouts of the MIR-tree and the MIR∗-tree, and varying
data set sizes.

Evaluation on Different Data Sets.
Table 4 reports the average server elapsed time, server I/O
cost, client elapsed time, number of entries in the VO,
VO size, index size, and communication frequency for the
four methods on the two data sets. As expected, the server
elapsed time is proportional to the server I/O cost. And
the client elapsed time is correlated with the VO size.
The MIR variants, including the MIR-tree and the MIR∗-
tree, outperform baseline IISL by orders of magnitude
in all aspects. The reason why IISL has extremely poor
performance is that its text and spatial score intervals are
derived separately. Furthermore, its spatial score interval is
converted into coordinate intervals on the x and y axes.
Those intervals cover too many objects that are added to
the VO. Hence, its processing costs at both the server and
client are high, and the VO size is large.

The server elapsed time and I/O cost of baseline IIMR
are comparable to those the MIR variants, while the MIR

variants outperform the IIMR by orders of magnitude in
terms of the client elapsed time, number of entries in the
VO, and the VO size. Although the IIMR also derives the
text score interval and the spatial score interval separately,
its processing cost is reduced due to the use of the MR-tree.
However, the separate intervals still cover too many objects
that are added to the VO, resulting in high verification cost
at the client and large VO size.

The performance of the MIR-tree and the MIR∗-tree
are comparable in terms of server elapsed time and I/O
cost. The numbers of entries in the VO for the MIR-tree
and the MIR∗-tree are the same. This is because the two
indexes have similar structures and processing algorithms.
The MIR∗-tree differs from the MIR-tree in how digests
are computed. In the MIR∗-tree, fewer digests are added to
the VO so that its client elapsed time and the VO size are
significantly smaller than that for the MIR-tree.

In terms of index size, the IIMR is the smallest. The
MIR-tree and the MIR∗-tree occupy more space than does
the IIMR due to the inverted files attached to non-leaf
nodes. The IISL occupies substantial space due to the sig-
nature chains on the sorted lists of the x and y coordinates.
These indexes, except for the IIMR, cannot fit in main
memory.

Our proposals outperform the two baseline algorithms
consistently on the two data sets. We use LONDFLI as the
default data set for the remaining experiments. Baseline
IISL is omitted due to its poor performance and high
storage cost.

TABLE 4
Performance Per Timestamp on Data Sets

Data Set EURO LONDFLI
IISL 215.73 48966.67

Server elapsed time IIMR 20.03 169.69
(milliseconds) MIR 20.88 210.53

MIR∗ 14.09 191.03
IISL 5611.06 2569.29

Server I/O cost IIMR 1.80 6.30
(page accesses) MIR 1.63 5.17

MIR∗ 1.63 5.17
IISL 33.64 584.89

Client elapsed time IIMR 211.44 2104.79
(milliseconds) MIR 14.26 105.52

MIR∗ 12.31 97.26
IISL 4195.86 30127.04

# of entries IIMR 2965.34 8500.97
in the VO MIR 293.08 756.31

MIR∗ 293.08 756.31
IISL 173.13 1266.15
IIMR 138.10 410.17

VO size (KB) MIR 15.89 45.53
MIR∗ 13.90 36.67
IISL 2.97 635.05

Index size IIMR 0.24 1.68
(GB) MIR 3.13 23.67

MIR∗ 3.13 23.67
Communication

frequency All 0.034 0.032

Varying k.
Figure 10 shows the performance of the three approaches
when varying the number k of requested results on data set
LONDFLI. The MIR variants substantially and consistently
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outperform the baseline in terms of client elapsed time
and VO size. As expected, the server elapsed time, client
elapsed time, and VO size of the three methods increase as
k increases, since requesting more result objects increases
the computation cost at the server side and calls for a larger
VO, resulting in higher verification cost at the client side.
The server I/O costs of the three methods decrease slightly
as k increases. This is mainly because more result objects
produce a smaller safe zone, which enables more pruning.
Hence, fewer index nodes (pages) are loaded from disk.
However, the processing cost of each visited index node
increases due to the larger result set.
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Fig. 10. Performance per Timestamp, Varying k

Varying the Number of Query Keywords.
Figure 11 shows the server elapsed time, server I/O cost,
client elapsed time, and VO size of the three methods when
varying the number of query keywords on data set LOND-
FLI. The MIR variants again consistently beat the baseline
algorithm. As the number of query keywords increases, the
performance of the three approaches decreases, since more
objects are involved in the computations.

Varying the Speed of Moving Queries.
Figure 12 shows the performance of the three approaches
when varying the speed of the moving queries on data
set LONDFLI. We observe that as the speed increases,
the computation and communication costs increase slightly,
since a query with high speed more quickly leaves the safe
zone and requests a query re-evaluation from the server.
The MIR variants outperform the baseline significantly at
different speeds.

Varying the Fanout.
The ability of the MIR∗-tree to reduce the VO size depends
on the number of pruned entries in visited non-leaf nodes
(Section 3.4). However, it is difficult to control the number
of pruned entries, which may depend on several factors,
e.g., the fanout, the query, and the distribution of the objects
in the data set. This experiment studies how the perfor-
mance of the MIR∗-tree and the MIR-tree are affected by
the fanout. Figure 13 shows the performance when varying
the fanout on data set LONDFLI. The server elapsed time
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and the server I/O cost of the MIR-tree and the MIR∗-
tree are comparable, while the MIR∗-tree has lower client
elapsed time and smaller VO size than the MIR-tree. The
reason is that in the MIR∗-tree, fewer digests are added to
the VO, thus reducing the processing cost at the client and
the VO size. And the operation of deriving one digest from
multiple digests does not add much computational cost in
the MIR∗-tree. As the fanout increases, the server elapsed
time and I/O cost decrease, since the heights of the MIR-
tree and the MIR∗-tree decrease so that it is faster to reach
the leaf level to obtain results. In contrast, the client elapsed
time and VO size increase as the fanout increases. Since
a node contains more entries, more entries may be added
to the VO, it results in higher processing cost at the client
side. The VO size of the MIR∗-tree is 20% smaller than that
of the MIR-tree when the fanout is 200. The improvement
of the MIR∗-tree decreases as the fanout increases. That is
mainly because the number of pruned entries decreases.
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Scalability.
To observed the scalability of the proposed indexes, we
generated 5 data sets from LONDFLI by randomly select-
ing 200K, 400K, 600K, 800K, and 1M objects. Figure 14
shows that the server elapsed time, server I/O cost, client
elapsed time, and VO size exhibit increasing trends as with
the data set size. Table 5 shows that the index size increases
linearly as the data set size increases. All the indexes cannot
fit the main memory.
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TABLE 5
Index Size (GB)

200K 400K 600K 800K 1M
MIR 4.03 7.91 12.13 15.76 19.71

MIR∗ 4.03 7.91 12.13 15.76 19.71

5 RELATED WORK
5.1 Static Query Authentication
In general, existing query authentication techniques are
classified into MHT-based approaches and approaches us-
ing signature chaining.

MHT-based Approaches. A popular authentication ap-
proach based on the MHT [23] has been used widely in
many proposals [19], [27], [42], [43]. It is a hierarchical
structure in which digests of nodes are recursively com-
puted using a secure hash function from the leaf level to
the root level. Then, the DO signs the root digest using a
private key, e.g., RSA [33].

Devanbu et al. [9] authenticate one-dimensional range
queries using an MHT on the query attribute. To prove the
completeness of the result for a range query [a, b] over a
sorted list (r1, r2, . . . , rn), the SP discloses the boundary
records to the client. In other words, the query result is
expanded into (ri−1, ri, . . . , rj , rj+1), where ri−1 < a ≤
ri, rj ≤ b < rj+1, and 1 < i ≤ j < n. The boundary
records guarantee that no records in the query range are
omitted. In addition to the expanded result, for each node
visited in the MHT, digests of all left-siblings of the left
boundary record ri−1 and digests of all right-siblings of
the right boundary record rj+1 on the paths from the root
are added to the VO. If the re-constructed root digest from
the VO matches the decrypted root signature, the result is
sound. Later, two disk-based adaptations of the MHT, i.e.,
the VB-tree [28] and the Merkle B-tree (MB-tree) [19], has
been are proposed.

Pang et al. [27] apply the MHT to the inverted index and
documents to authenticate text retrieval query results (key-
word search). The proposed Term-MHT builds an MHT
on the posting list of each word, while the Term-CMHT
constructs an MHT on the posting list entries in each disk
page, since a posting list normally occupies several disk
pages. The digest of the MHT (hash value of the root) for
a disk page is integrated into the MHT for the previous
disk page. The digest of the first page of each posting
list is signed by the DO, which is used to verify any j
leading pages of a posting list. A document is represented
by a sequence of entries (w , weight) in ascending w order.
The proposed Document-MHT takes the document entries
as leaves. Both the Term-MHT and Term-CMHT are used
to guarantee the that posting lists involved in the query
processing are correct, and the Document-MHT is used to
check the computed score of each encountered document.

Another solution inspired by the MHT technique is the
MR-tree [42], an index based on the R∗-tree that is capable
of authenticating arbitrary spatial queries. Its leaf nodes are
identical to those of the R∗-tree. Non-leaf nodes contain
entries of the form e = (ptr ,Λ, H), where e.ptr is a
reference to a child node, e.Λ is the MBR of all rectangles
in entries of the child node, and e.H is a digest of the
child node. The digest of a leaf node is computed from the
hash value of the concatenation of the binary representation
of all objects in the node. The digest of a non-leaf node
summarizes its child nodes’ MBRs as well as their digests.
The digest of the root node is signed by the DO and is
stored with the tree.

For the client to verify a query result, the SP utilizes the
MR-tree to generate a verification object VO. A circular
verification set �(q, γ) with center q and radius equal to the
distance between q and its kth nearest neighbor is defined.
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The MR-tree is traversed in depth-first manner with the
following conditions: (1) a non-leaf entry e is added to the
VO if e does not intersect �(q, γ); (2) all objects in a
visited leaf node are added to the VO. To authenticate the
query result, the client first reconstructs the digest of the
root of the MR-tree from VO. Then it verifies it against
the root signature offered by the data owner. Then the
client finds the kNNs directly from the VO, defines its
own verification set �(q, γ′), and checks whether no non-
leaf entries in VO intersects �(q, γ′). If yes, the correctness
of the NN result is guaranteed.

Lin et al. [22] study the authentication of location-based
skyline queries. They propose two authentication methods.
One is based on the MR-tree. The other one utilizes the
MR-Sky-tree that is designed specially for skyline queries.
Signature Chaining. Unlike MHT, signature chaining [26]
authenticates both the soundness and completeness of one-
dimensional range queries. Consider a data set containing
4 records p1–p4, sorted on the query attribute. The data
owner inserts two special records p0 and p5 with values
−∞ and +∞. A signature is created for each record, except
the special records. The signature of a record pi is based
on the hash value of the concatenation of its preceding
record pi−1, itself pi, and its succeeding record pi+1. The
data set and the signatures are sent to the SP. Assume that
the result of a range query contains p2, p3, and p4. The SP
returns a VO containing the result (p2, p3, p4), the signature
of each record in the result (sig123, sig234, sig345), and
the boundary records p1 and p5. In order to reduce the
VO size, the Condensed-RSA [24] adds only one signature
sig = sig123 · sig234 · sig345 (mod n) to the VO instead
of three. Given a VO, the client first checks that the
signature is valid, which guarantees that all the records in
the VO are correct and adjacent. Then the client checks
that the two boundary records fall outside the query range,
which ensures that no result record is missing at the range
boundaries, i.e., p2 and p4 are indeed the first and last
records of the result.

This scheme has also been extended to multi-dimensional
index structures [7]. Compared with the MHT-based ap-
proaches, signature chaining methods incur high index
construction costs, storage overhead, and client-side ver-
ification time [19].

The two baseline algorithms considered in the experi-
mental study exploit the above authentication techniques
(MHT, MR-tree, and signature chaining), and they are
found to be inefficient compared to our proposals.

5.2 Moving Query Authentication

Existing technique for authenticating moving kNN
queries [44] cannot help in authenticating MkSK queries,
since the safe zone of a kNN query is a Voronoi cell [25],
while the safe zone of an MkSK query is a Multiplicatively
Weighted Voronoi (MW-Voronoi) cell [25]. A Voronoi cell
considers only spatial distance and has a polygon shape. In
contrast, an MW-Voronoi cell defines the influence region
of an object based on its weight (e.g., text relevance) and is

an irregular shape consisting of edges, arcs and holes. The
structures and construction algorithms for these different
kinds of cells are totally different. Figure 15(b) illustrates
the MW-Voronoi diagram of the same nine objects as in
Figure 15(a). In the MW-Voronoi diagram, each object
has a weight (underlined numbers). These weights are
the text relevancies between the objects and the query,
known only when the query is submitted. In other words,
different queries produce different MW-Voronoi diagrams
on the same data set. Thus, pre-computation based ap-
proaches [17], [44] are inapplicable, since enumerating
all possible MW-Voronoi diagrams is computationally pro-
hibitive.
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Fig. 15. Voronoi Versus MW-Voronoi Diagrams

Yung et al. [45] study the authentication of moving range
queries. The safe zone of a moving range query and its
verification set are also different from ours, and thus their
technique is inapplicable to our problem.

6 CONCLUSION
This paper proposes a new authenticated data structure, the
MIR-tree, to efficiently authenticate moving top-k spatial
keyword query results, thus guaranteeing the soundness and
completeness of both a top-k result and its corresponding
safe zone. A verification object for authenticating the top-
k results and safe zones of MkSK queries is designed.
Algorithms for constructing and using verification objects
for verifying the top-k results and safe zones are devel-
oped. An enhancement of the MIR-tree, the MIR∗-tree,
is proposed to further reduce the communication cost.
Extensive empirical studies on real data sets demonstrate
that the proposed approaches are capable of outperforming
two baseline algorithms that utilize existing techniques by
orders of magnitude.
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APPENDIX A
SAFE ZONE

A safe zone or the query considered is an order-k mul-
tiplicatively weighted Voronoi (MW-Voronoi) region [25].
Here, we recall relevant definitions.

Let D be a set of weighted points in two-dimensional
Euclidean space U . A point a in D has (i) a weight
w(a) and (ii) coordinates (ax, ay). The weighted distance
between any point z in U and a is defined as dw(z, a) =
‖z a‖/w(a), where ‖z a‖ is the Euclidean distance between
z and a.

Definition A.1: The dominant region of point a over
point b is defined as:

Doma,b = {z ∈ U | dw(z, a) ≤ dw(z, b)}. (13)

To characterize the shape of Doma,b, we define the
Apollonius circle and explain its relationship with Doma,b.
As an example, Figure 16 shows the Apollonius circle of
two points a and b. Any location z on the circle satisfies
the equation ‖z a‖ = µ · ‖z b‖.

b a

z z

oa,b

ra,b

Doma,b

M N

Fig. 16. Apollonius circle

Definition A.2: Given two points a and b and a constant
0 ≤ µ ≤ 1, the Apollonius circle Ca,b is defined as all
locations z that satisfy: ‖z a‖ = µ · ‖z b‖. The Apollonius
circular region Ca,b is defined as the region where ‖z a‖ ≤
µ · ‖z b‖.

Lemma A.1: [Radius and center, Apollonius circle]
Given two points a and b such that w(a) < w(b),
Doma,b = Ca,b. The center oa,b and the radius ra,b of
Ca,b are shown in Equations 14 and 15. In addition, we
have: Domb,a = U −Ca,b, where U is the spatial domain.

oa,b =
(

w2(b)·ax−w2(a)·bx
w2(b)−w2(a) ,

w2(b)·ay−w2(a)·by
w2(b)−w2(a)

)
(14)

ra,b = w(a)·w(b)·‖a b‖
w2(b)−w2(a) (15)

We will use “circle” and “circular region” interchangeably.
For the special case w(a) = w(b), the Apollonius

circular region Ca,b degenerates to the perpendicular half
plane ⊥a,b. In general, the dominant region Doma,b is
expressed as:

Doma,b =

 Ca,b if w(a) < w(b)
U − Cb,a if w(a) > w(b)
⊥a,b if w(a) = w(b)

(16)

The MW-Voronoi diagram of D is the collection of MW-
Voronoi regions of all points in D. These regions form a
(disjoint and complete) partitioning of the spatial domain.

Definition A.3: Given a (result) point p∗ ∈ D, its MW-
Voronoi region with respect to D is defined as:

Υ(p∗) =
⋂

p′∈D−{p∗}

Domp∗,p′ (17)

Based on a (result) point p∗ ∈ D, we can partition D
into D = D+ ∪ D− ∪ Do ∪ {p∗}, where set D+ contains
all points with higher weight than p∗, set D− contains all
points with lower weight than p∗, and set Do contains the
objects whose weights are identical to p∗. By applying
Equation 16, we can re-express the MW-Voronoi region
as Equation 18. Thus, higher-weight neighbors add to the
MW-Voronoi region of a point, forming convex edges;
lower-weight neighbors subtract from it, forming concave
edges; and equal-weight neighbors crop it with straight
lines.

Υ(p∗) =
⋂

p∈D−{p∗}

Domp∗,p (18)

=
⋂

pj∈D+

Cp∗,pj ∩
⋂

pi∈Do

⊥p∗,pi ∩
⋂

pk∈D−
(U − Cpk,p

∗)

=
⋂

pj∈D+

Cp∗,pj ∩
⋂

pi∈Do

⊥p∗,pi −
⋃

pk∈D−
Cpk,p

∗

In the example in Figure 17, the gray region is the safe
zone (MW-Voronoi region) Υ(p1) for the top-1 result p1.
It is calculated by Cp1,p4 ∩ Cp1,p5 ∩ ⊥p1,p2 − Cp3,p1 . It
is generally far from every data object that contributes to
defining a safe zone. Note that safe zone Υ(p1) consists
of 3 arcs (edges) that originate from the Apollonius circles
Cp1,p4

and Cp3,p1
and the perpendicular bisector ⊥p1,p2

.
Apollonius circle Cp1,p5 does not contribute to the safe
zone Υ(p1) because Υ(p1) is completely inside Cp1,p5 . The
objects that are necessary for representing a safe zone are
called influence objects. In Figure 17, objects p2, p3, and
p4 are influence objects, while p5 is not.

Let RS be the top-k result of a query q. According to
Okabe et al. [25], the order-k MW-Voronoi region of the set
RS, denoted by Υk(RS), contains all locations that take
the set RS as the top-k result. In other words, Υk(RS) is
the safe zone for the result set RS . Region Υk(RS) can
be expressed by the intersections of order-1 MW-Voronoi
regions [25]

Υk(RS) =
⋂

p∗j∈RS
ΥD−RS(p∗j ), (19)

where ΥD−RS(p∗j ) denotes the MW-Voronoi region of p∗j
with respect to the object set D −RS .

APPENDIX B
VERIFICATION REGIONS FOR BASELINES

Given the top-k result RS of q, let Tk be a text score
interval [tsk ,+∞) and Sk be a spatial score interval [0, ssk ],
where tsk = minp∈RS {trq(p)} refers to the minimum
text relevance of the objects in RS and ssk refers to the
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Fig. 17. Example Safe Zones

TABLE 6
Symbols

p an object
ψ keywords
λ point location
D data set
RS top-k object set
Υ(·) safe zone
‖ · ·‖ Euclidean distance
‖ · ·‖min minimum Euclidean distance
trq(p) text relevancy of p w.r.t. q
rankq(p) ranking score of p w.r.t. q
w(·) weight
Domp∗,p dominant region of p∗ over p
Cp∗,p Apollonius circular region
U Euclidean space
⊥p∗,p perpendicular half plane
Q(λ, ψ, k) top-k result of a query with keywords ψ and

point location λ
hw(·) word digest
h(·) secure hash function
Λ minimum bounding rectangle
bordmin (p∗, p) minimum distance between p∗ and

the border of dominant region Domp∗,p
bordmax (p∗, p) maximum distance between p∗ and

the border of dominant region Domp∗,p
VSrs verification set for top-k result objects
VSsz verification set for safe zone
VSX verification set for x-coordinate
VSY verification set for y-coordinate
VSw verification set for keyword w
VST verification set for text relevance
VSS verification set for spatial distance

maximum distance between the query and the result objects,
i.e., maxp∈RS{‖q p‖}.

Given the safe zone of the top-k result Υk(RS), let
I be the influence object set of the safe zone. We de-
fine two kinds of distances. One is the minimum bor-
der distance of an object p from the result set RS ,
which is the minimum value of the minimum border
distances of p from all the result objects in RS, i.e.,
bordmin(RS, p) = minp∗j∈RS{bordmin(p∗j , p)}. The other
is the maximum distance between the result set RS and
an object p, i.e., ‖RS p‖max . Consider the non-influence
object ps ∈ (D \ RS \ I) with the smallest minimum
border distance from RS, i.e., ∀p 6= ps ∧ p ∈ (D \ RS \
I), bordmin(RS, ps) < bordmin(RS, p). We construct a
text score interval Tsz = (tssz ,+∞) and a spatial score
interval Ssz = [0, sssz ), where tssz = trq(ps) is the text
relevance of ps and sssz = ‖RS q‖max + ‖RS ps‖max .
Theorem B.1 guarantees that any object with text relevance
no greater than tssz and having the distance from q no
smaller than sssz cannot affect the safe zone Υk(RS).

Theorem B.1: Consider the non-influence object ps ∈
(D \ RS \ I), such that ∀p 6= ps ∧ p ∈ (D \ RS \ I) and
bordmin(RS, ps) < bordmin(RS, p). Let tssz = trq(ps)
and sssz = ‖RS q‖max + ‖RS ps‖max . Object p can-
not affect the safe zone Υk(RS) if trq(p) ≤ tssz and
‖q p‖ ≥ sssz .

Proof: Since ps is a non-influence object, it cannot
affect the safe zone, i.e.,

∨
p∗j∈RS

bordmin (p∗j , ps) > τj .
Consider an object p such that trq(p) ≤ tssz = trq(ps) and
‖q p‖ ≥ sssz = ‖RS q‖max + ‖RS ps‖max . Applying the
triangle inequality, for any result object p∗j in RS, we have
‖q p∗j‖+ ‖p∗j p‖ > ‖q p‖ ≥ ‖RS q‖max + ‖RS ps‖max ≥
‖q p∗j‖+‖p∗j ps‖. Thus, we derive ‖p∗j p‖ > ‖p∗j ps‖. Since
bordmin(p∗j , p) = ‖p∗j p‖trq(p∗j )/ (trq(p∗j ) + trq(p)) >
‖p∗j ps‖trq(p∗j )/(trq(p∗j ) + trq(ps)) = bordmin(p∗j , ps) >
τj , object p cannot affect the safe zone.

Combining the text score intervals and the spatial score
intervals derived from the top-k result and the safe zone,
we have verification sets

VST = Tk ∪ Tsz = [ts,+∞)

and
VSS = Sk ∪ Ssz = [0, ss],

where ts = min{tsk , tssz} and ss = max{ssk , sssz}. The
verification sets for the sorted lists of coordinates are the
coordinate intervals

VSX = [qx − ss, qx + ss]

and
VSY = [qy − ss, qy + ss],

which cover the x-coordinates and y-coordinates, respec-
tively. The coordinates of q are represented as (qx, qy). As
shown in Figure 18, the shaded circle is VSS . The VSX

and VSY are the bold intervals on the x and y axes.
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Fig. 18. Example Spatial Score Interval

To compose the verification set VSwi
for the posting list

of each query keyword wi in the inverted index, the state-
of-the-art algorithm Threshold with No Random Access
(TNRA) [10] is applied on the inverted index to retrieve
the objects whose text relevancies fall inside VST . When
the TNRA algorithm stops, the posting list of each query
keyword has a cut-off value cvi that indicates all the objects
whose text relevancies fall inside VST have been obtained,
i.e., all the objects after the cut-off values are outside VST .
Then the verification set on the posting list of word wi is:

VSwi
= [cvi ,+∞).


